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Photon scattering from a strongly driven many-particle system is investigated. The second-order correla-
tion function for light emitted from a strongly and near-resonantly driven dilute cloud of atoms is discussed.
It is shown that photon scattering from strongly driven multi-atom systems exhibits bunching together
with super-Poissonian or sub-Poissonian statistics. Next, squeezing in the resonance fluorescence emitted
by a regular structure of atoms is discussed. In a suitable modified environment, squeezing even occurs
for a resonant driving field, in contrast to the regular vacuum case.
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How to characterize light is a basic but ubiquitous prob-
lem in many branches of physics. In quantum physics,
correlation functions are widely used in discussing the
foundations of the underlying theory. As one of the most
important model system, Young’s double-slit experiment,
despite its simplicity, exhibits the first-order coherence
properties of light and allows to explore fundamen-
tal questions such as complementarity and uncertainty
relations[1]. The remarkable progress of trapping atoms
makes it possible to investigate experimentally the inter-
ference of the fluorescence light from two driven atoms
which play the role of the slits in Young’s experiment[2].
In this experiment, the two slits were replaced by two
198Hg+ ions in a linear trap and the interference pattern
in the light scattered from the two ions was observed.
However, it was shown that, in the strong-field limit,
the interference vanished at strong driving[3−10]. This
restricts potential applications, e.g., coherent backscat-
tering from disordered structures of atoms[11], the gener-
ation of squeezed coherent light by scattering light off of
a regular structure[12], the lithography[13,14], or precision
measurements and optical information processing.

The interference vanishing at strong driving can be un-
derstood from the two-particle collective dressed states.
In the strong-field limit, the two-particle collective
dressed states are uniformly populated, i.e., the prob-
abilities of the symmetric transitions and of the antisym-
metric transitions are the same, so that the fringes with
bright center and those with dark center cancel with each
other. Some of us presented a scheme to recover first-
order interference with almost full visibility in strong
fields by tailoring the surrounding electromagnetic bath
with a suitable frequency dependence[15], e.g., with the
help of cavities. Based on this idea, we have proposed a
scheme to generate squeezing in strong driving field[16].

However, it is not possible to extract the quan-
tum properties from the first-order correlation func-
tions. This motivated the study of second-order correla-
tions, initiated by the intensity-correlation experiments
conducted by Hanbury-Brown et al.[17]. Subsequently,
second-order correlation measurements have found ap-

plications in many fields of modern physics[18], such as
astronomy[19], optics[20,21], high-energy physics[22], con-
densed matter physics[23−25], and atomic physics[26]. The
normalized second-order correlation functions g(2)(τ)

is measured by two detectors positioned at ~R1 and
~R2. g(2)(τ = 0) describes the photon statistics (e.g.,
sub/super-Poissonian), whereas g(2)(τ 6= 0) indicates
photon bunching or antibunching. Particularly, sub-
Poissonian and antibunching exhibit the quantum prop-
erties of the radiation field. We study photon scattering
from a strongly and near-resonantly driven dilute cloud
of atoms[27], and recently we have demonstrated that n-
particle atomic correlations can be directly detected via
light scattering from an ensemble of laser-driven atoms
in which either a dipole-dipole or a Rydberg-Rydberg in-
teraction exits[28].

In this letter, we study a many-particle system radiated
by a strong driving field. In the strongly driven case,
Mollow spectrum with three distinct peaks shows up[29],
for which the spectral properties can be defined individu-
ally. To start with, we focus on the case of a strong near-
resonant driving of the ensemble and study the genera-
tion of correlated light from a disordered many-particle
system. It is shown that the second-order correlations for
various combinations of photons from different spectral
lines exhibit bunching together with super-Poissonian or
sub-Poissonian photon statistics, depending on the de-
tector positions. Later, we propose a scheme to generate
strong squeezing light from a linear chain of identical
atoms by embedded the system in a modified reservoir.
Our research shows that with a suitable modification of
the surrounding electromagnetic bath, squeezing is re-
covered at strong driving even in the resonant case.

We describe the system in a suitable dressed state
picture. All particles have identical atomic transition
frequencies ω0, and are localized at positions ~rj with
j ∈ {1, 2, · · · , N}. We define the inter-particle separa-
tion vectors as ~rij = ~ri − ~rj . The external laser field

has frequency ωL = ckL = 2πc/λL, wave vector ~kL and
wavelength λL. In electric dipole and rotating wave ap-
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proximations, the system Hamiltonian can be written as

H = H0 +H
[15]
I , and

H0 =
∑

k

~(ωk − ωL)a†kak +
N

∑

j=1

~Ω̃jRzj , (1a)

HI = i
∑

k

N
∑

j=1

(~gk · ~dj)
{

a†kS
−
j e

−i(~k−~kL)·~rj − H.c.}, (1b)

S−
j =

Rzj

2
sin 2θj −R

(j)
21 sin2 θj +R

(j)
12 cos2 θj , (1c)

where H0 represents the Hamiltonian of the free electro-
magnetic field (EMF) and free dressed atomic subsys-
tems, respectively, HI accounts for the interaction of the

laser-dressed atoms with the EMF, and ak and a†k are
the field annihilation and creation operators obeying the
standard commutation relations for bosons, respectively.

The atomic operators R
(j)
αβ = |α̃〉j j〈β̃| describe the tran-

sitions between the dressed states |β̃〉j and |α̃〉j in atom
j for α 6= β and dressed-state populations for α = β,
and satisfy the commutation relations of the su(2) alge-

bra. The dressed states |α̃〉j entering the operators R
(j)
αβ

can be represented through the bare states |α〉j via the
transformations

|1〉j = sin θ|2̃〉j + cos θ|1̃〉j ,

|2〉j = cos θ|2̃〉j − sin θ|1̃〉j .
(2)

We further define Rzj = |2̃〉j j〈2̃| − |1̃〉j j〈1̃| is the
difference of the upper and lower dressed state popu-
lation, and Ω̃ = Ω̃j =

√

Ω2 + (∆/2)2 is the generalized

Rabi frequency, with 2Ω = (~d · ~EL)/~. Here, ~EL is the

electric laser field strength, and ~d ≡ ~dj is the transition
dipole matrix element. The detuning ∆ = ω0 − ωL is
characterized by cot 2θ = ∆/(2Ω).

The master equation for an arbitrary atomic operator
Q (t) under Born approximation, Markovian approxima-
tion and secular approximation can be obtained by

d

dt
〈Q (t)〉 = iΩ̃

N
∑

j=1

〈[Rzj , Q (t)]〉

−
γ (ωL)

4
sin2(2θ)

N
∑

j=1

L (Rzj)

− γ (ω−) sin4 θ

N
∑

j=1

L(R
(j)
12 )

− γ (ω+) cos4 θ
N

∑

j=1

L(R
(j)
21 ), (3a)

L(A) = 〈A[A†, Q(t)]〉 + 〈[Q(t), A]A†〉, (3b)

where ωL and ω± = ωL ± 2Ω̃ are the dressed state tran-
sition frequencies with the decay rate γ (ωL) and γ (ω±),
respectively. We find in the master equation that, in
the dressed states, the Mollow spectrum has already
showed up. The central band emits at the laser fre-
quency ωL, and the left (right) band at ω− (ω+)[30,31].

In the strong-field limit, different lines of the spectral
are well-separated. In particular, in the following we will
denote light originating from Rzj sin(2θ)/2 as the central

spectral component indicated by C, and R
(j)
21 cos2 θ and

R
(j)
12 sin2 θ as the right (R) and left (L) spectral sideband

components. In what follows, we shall use this decompo-
sition to investigate the properties of the scattered light.

We proceed by investigating an atomic sample of ar-
bitrary shape and of characteristic size d, consisting of
distinguishable non-overlapping two-level particles (see
Fig. 1). The typical inter-particle separation l satisfies
the restriction λL ≪ l ≪ d with d/c < τs, where τs is the
spontaneous decay time.

What we are interested in is the normalized second-
order correlation functions g(2)(τ), which is defined as

g(2)
mn(τ, ~R1, ~R2) =

G
(2)
mn(τ, ~R1, ~R2)

Im(~R1)In(~R2)

=
〈a†m(~R1)a

†
n(τ, ~R2)an(τ, ~R2)am(~R1)〉

Im(~R1)In(~R2)
, (4)

i.e., as the unnormalized second order correlation func-

tion normalized to the intensities Im(~R1) and In(~R2).

The quantity g
(2)
mn for {m,n} ∈ {C, R, L} can be inter-

preted as a measure for the probability of detecting one
photon emitted in mode m and another photon emitted
in mode n with time-delay τ .

To calculate the correlation function, we assume laser
driving on resonance (θ = π/4), and a large atomic en-
sembles (N ≫ 1) such that the secular approximation is
valid. We also assume that all possible pairs of atoms
contribute equally to the second-order correlation func-
tions. This assumption is valid as long as the angle
between the wave vectors of the incident laser and the
scattered photons is small, that is {φ, φ0} should be of
order of few degrees (see Fig. 1). Finally, we for the mo-
ment consider a single interparticle distance vector ~rji for

Fig. 1. (Color online) Schematic setup of a dilute atomic en-

semble pumped with a coherent field with wave-vector ~kL. (a)
Energy levels of each of the ensemble particles, and the inter-
action with the strong coherent light with coupling strength
Ω; (b) ensemble with typical inter-particle distance length
scale denoted by l with l ≫ 2π/kL. We consider the case
of photon pair emission in forward direction and denote the

angle between the two emitted photons with wave-vectors ~k1

and ~k2 as φ0, and ~k1 + ~k2 ≈ 2~kL. The direction of the emis-

sion cone defined by ~k1 and ~k2 is characterized by the angle

φ between (~k1 + ~k2)/2 and ~kL.
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all pairs only, but this restriction will be relaxed later on.
Based on these assumptions, we find that the correlation
and cross-correlation functions of photons scattered into
the different spectral bands can be represented as

g
(2)
CC(τ, ~R1, ~R2) = 1 + 2 cos(δ1) cos(δ2)e

−2γτ , (5a)

g
(2)
LL(τ, ~R1, ~R2) = g

(2)
RR(τ, ~R1, ~R2)

= 1 + cos(δ1 − δ2)e
−3γτ , (5b)

g
(2)
LR(τ, ~R1, ~R2) = g

(2)
RL(τ, ~R1, ~R2)

= 1 + cos(δ1 + δ2)e
−3γτ , (5c)

g
(2)
CX(τ, ~R1, ~R2) = g

(2)
XC(τ, ~R1, ~R2)

= 1 for X ∈ {L,R}, (5d)

where δs = (~ks −~kL)~rji with ~ks being the wave-vector of

the photon s scattered in direction ~Rs (s ∈ {1, 2}).
To estimate the signal obtained from a cloud of ran-

domly distributed particles, the correlation functions

g
(2)
XY (τ, ~R1, ~R2) have to be averaged over the different

interatomic distance vectors ~rij in the cloud, which po-
tentially could eliminate the correlations. We choose an
averaging procedure as simple as possible: (i) an isotropic
average over the relative orientation n of the atoms over
the unit sphere, followed by (ii) an average of the inter-
atomic distance rji = |~rji| over an interval of order of the

laser wave-length, around their typical distance l[32]:

〈· · · 〉conf = (kL/4π)

∫ l+2π/kL

l−2π/kL

drji

∫

dΩn · · · . (6)

The obtained results for the normalized second-order
correlation function after the configuration average for
the photons scattered in the central spectral band are
shown in the upper row of Fig. 2. It can be seen that
even after the averaging, the correlation function exhibits
a sharp peak around direction of the the incident laser

wave-vector ~kL, indicating super-bunching. Figure 2(a)
shows the case in which two single-photon detectors are
placed symmetrical with respect to the laser wave-vector
~kL direction given by φ = 0. Figure 2(b) depicts the
same correlation function but detected with a single two-
photon detector (φ0 = 0) for different emission directions
φ. Note that the correlation function for two photons
emitted both from the left or from the right spectral side-
band does not show a directionality in space.

The bottom row of Fig. 2 shows the corresponding re-
sults for the two photon cross correlation with one pho-
ton emitted from the left, and one from the right spectral
side-band. Again, we find maxima at φ0 = 0 for two in-
dividual detectors placed symmetrically around the inci-
dent laser direction. But in contrast to the central band
correlation function, this maximum is not peaked, but
rather broad. If a two-photon detector is used, a narrow
maximum is observed in the forward direction (Fig. 2(d)).
Interestingly, in this case, depending on the precise po-
sitioning around the forward direction, both Poissonian
and sub-Poissonian photon-statistics can be generated.
The emitted light intensity is proportional to the square
of the number of particles, and thus can potentially be
intense.

Fig. 2. Normalized and configuration averaged second-order

correlation functions. (a, b) Correlation function g
(2)
CC(0) be-

tween two photons emitted from the central spectral band

is shown, (c, d) corresponding function g
(2)
LR(0) = g

(2)
RL(0) for

pairs with one photon emitted from each sideband. In (a,c),
the correlation functions are shown as a function of the open-
ing angle φ0 between the two photons (see Fig. 1), which
corresponds to the case of two distinct detectors. The two
photons are measured at positions symmetric with respect to
the incident laser field direction, i.e., φ=0. In (b,d), photon
pairs with φ0 = 0 emitted in the same direction are consid-
ered, and plotted as a function of the emission direction φ.
For all subfigures, the interparticle length scale is chosen as
l = 50λL.

We discuss the atomic sources of squeezing from a regu-
larN identical atoms system in a strong field. It has been
shown that only few or no squeezing could be achieved
with strong driving fields. To see the squeezing, the field
is expressed in the term of the Hermitian amplitude op-
erators xσ = (a†eiσ + ae−iσ)/2. In the bare states, we

have a† =
N
∑

n=1
S+

n and a =
N
∑

n=1
Sn, where S+

n (Sn) is the

upper (lower) operator for the nth atom. The condition
for squeezing can be written in terms of the normally
ordered variance:

〈: (∆xσ)2 :〉 < 0, (7)

in certain space-time intervals. In the multi-atom sys-
tem, the individual atomic operators can be expressed

as S±
n = S± exp[∓ i(ωLt + φ − ~kL · ~Rn − ωL

c |~r − ~Rn|)],

where ~Rn and ~r are the position of the nth atom and the
detector, and φ is the phase of the exciting laser wave.
We assume that the linear dimensions of the scattering
volume are small compared with the distance between
the scattering volume and the point of the observation,
therefore we may write

~kL · ~Rn+
ωL

c
|~r − ~Rn| ≈ ~k′ · ~r + (~kL− ~k′) · (~R+ ~rn), (8)

where we have used the abbreviation ~k′ = ωL

c
~r−~R

|~r−~R|
.

We focus on the squeezing in modified reservoirs. In
the free space, the decay rates from the three bands are
equal γ(ω+) ≈ γ(ω−) ≈ γ(ωL). However, in the modified
reservoir this relation no longer holds. Particularly, we
assume that the mode density at one of the side bands
is either reduced or enhanced, for example via a cavity.
Thus, we assume that γ+ = γ(ω+) is no longer the same
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as γ− = γ(ω−), while γ0 = γ(ωL) remains unchanged.
We write operators into the dressed states and obtain

〈: (∆xσ)2 :〉 =
N

4
{
(

κ2
+cos4θ+κ2

− sin4 θ+2κ2
0 sin2 θ cos2θ

)

+
(

κ2
+ cos4 θ − κ2

− sin4 θ
)

〈Rz〉

+
1

2
sin2 2θ

(

κ2
0−κ+κ−

)

|F | cos (2σ+2ψ)

−
1

2
κ2

0 sin2 2θ〈Rz〉
2[1+|F | cos (2σ+2ψ)]},

(9)

where

F =
1

N

N
∑

n=1

exp[2i
(

~kL − ~k′
)

· ~rn] = |F | ei arg F , (10a)

ψ = ~k′ · ~r − ωt+
(

~kL − ~k′
)

· ~R+
1

2
argF − φ, (10b)

where θ is defined as cot 2θ = ∆/(2Ω). In the long-time
limit, the atoms assume the steady-state indicated by
subindex s, and we have 〈Rz〉 ≡ 〈Rzi〉s. The parameters
κ± are related to the decay rates by κ2

+/κ
2
− ≈ γ+/γ−.

We consider that the atoms are distributed in a lin-
ear chain. The distance vector between two neighboring
atoms is ~r0. Equation (10a) can be simplified when de-
tect the fluorescent light in such directions which satisfy

the condition (~k−~k′) · ~r0 = nπ, n = 0, ± 1, ± 2, · · · . In
these directions, we have |F | = 1. If we choose the phase
ψ appropriately, from Eq. (9), it is clearly seen that
the resulting strength of squeezing in N times stronger
than in the single-atom case. From Eq. (3a), we derive
the equations of motion and obtain the steady-state so-
lutions

〈Rzi〉s =
γ− sin4 θ − γ+ cos4 θ

γ− sin4 θ + γ+ cos4 θ
, (11a)

〈R
(i)
21 〉s = 〈R

(i)
12 〉s = 0. (11b)

Suppose for instance that in the reservoir we have
κ+ ≪ κ−, i.e., γ+ ≪ γ−. For a resonant driving field
(θ = π/4), one has 〈Rz〉 ≈ 1, and Eq. (9) becomes

〈: (∆xσ)2 :〉 =
N

8
κ+{κ+ − κ−|F | cos [2(σ + ψ)]}, (12)

which is negative for 2(σ + ψ) = 2nπ (n ∈ {0, 1, · · · })
and |F | = 1. On the contrary, for κ+ ≫ κ−, and a res-
onant driving field (θ = π/4), one has 〈Rz〉 ≈ −1, and
therefore

〈: (∆xσ)2 :〉 =
N

8
κ−{κ− − κ+|F | cos [2(σ + ψ)]}, (13)

which again is negative for 2(σ+ψ)=2nπ (n ∈ {0, 1, · · · })
and |F |=1. From these results we find that the quantum
fluctuations of the scattered light can be squeezed even
in the case of a resonant driving field, in contrast to the
free space case.

In Fig. 3, we show the uncertainties 〈: (∆xσ)2 :〉 given
by Eq. (9) as a function of the detuning ∆/2Ω in different
modified environments. The vertical solid line at
∆/2Ω=0 indicates the resonant case, and the shadow

Fig. 3. (Color online) Uncertainty 〈: (∆xσ)2 :〉 plotted against
the detuning ∆/2Ω. (a) γ+ < γ−. The dotted (red) line de-
picts γ+/γ− = 0.05, the dashed (green) one shows γ+/γ− =
0.2, the dash-dotted (blue) line is for γ+/γ− = 0.5, while the
solid (black) curve corresponds to the free space γ+/γ− = 1.
(b) γ+ > γ−. The dotted (red) line depicts γ+/γ− = 150,
the dashed (green) one shows γ+/γ− = 50, the dash-dotted
(blue) line is for γ+/γ− = 10, while the solid (black) curve
corresponds to the free space γ+/γ− = 1. Here |F | = 1,
κ+ ≈ κ0 and 2(σ + ψ) = 2nπ with n ∈ {0, 1, · · · }.

areas below the horizontal solid line correspond to the
situations that suqeezing happen (〈: (∆xσ)2 :〉< 0). It is
shown that the modification of the environmental vac-
uum reservoir improves the squeezing, as the minimum
of the curves becomes more and more negative with in-
creasing modification (see the dash-dotted, dashed, and
dotted curves in Fig. 3). From our analytical result, one
can see that the squeezing originates from contributions
from the sidebands of the Mollow triplet, i.e., the terms
proportional to κ+κ−.

In conclusion, we study a many-particle system radi-
ated by a strong driving field, for which the spectral
properties can be defined individually. To investigate
the quantum effects of the radiation field, we study
the second-order correlations of light scattered from a
disordered system, and we find that the second-order
correlations for various combinations of photons from
different spectral lines exhibit bunching together with
super-Poissonian or sub-Poissonian photon statistics,
tunable by the choice of the detector positions. Later,
to overcome the limitation of squeezing in weak driving
field, we propose a scheme to generate strong squeez-
ing light from a linear chain of identical atoms by the
modification of the reservoir. It is shown that squeezing
can be recovered at strong driving even in the resonant
case.
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